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I. INTRODUCTION

The orientation distribution function F of nonspherical particles

is of great importance for the evaluation of system properties with a

directional dependence. In the transport mechanics field of interest,

the mean settling velocity of a cloud of orientable particles (1), and

the particle-ensemble orientationally averaqed diffusion tensor (2-t"

serve as examples of a property determined by F. Also, the optical- I'

orientation interaction in a system of morphologically unisotropic

particles (5-7) constitutes another case of this behavior. The orien-

tation distribution of nonspherical particles or molecules in solution,

which is essentially the same phenomenon, has been a major subject of

interest in rheology for a long time.

In essence, the orientation of particles in space depends on the inter-

play between a randomizing action such as that of rotational Brownian

motion and microturbulence, and an orienting action arising from fluid

dynamic field gradients and external torques; likewise, the orientation can

be affected by a (physical) concentration source due to translational

diffusion of the particles (8).

In the frequently encountered cases characterized by the absence of ex-

ternal orienting forces and by a (concentration) source whose contribution

can be ignored due to the small value of the ratio between a typical

particle size and system's dimension (9), and for laminar flows, the ori-

entation distribution function F will be determined only by the flow

gradient and particles' rotational Brownian motion. The relative weight

of these factors is expressed in the rotational Peclet number a defined by

(A =//D. where W. is a typical gradient and D. is a typical rotational "'

diffusion coefficient. Essentially, the function F is a flow property. 'e-

Studies on the nature of the distribution function have been carried out

for cases of spheroidal particles immersed in a special though represen-

tative in certain situations flow like that of a simple shear (10,11)

and an irrotational extensional one (12). Also, investigations have been E3

performed for the asymptotic situations of a very strong field, ot >> I, and-..-- .

a very weak field oc < 1 1, and nearly spherical particles (8,13).
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The interest in rheology was mostly in the second moment of the

particle orientation vector pl so, for the intermediate cases of We,

it was sufficient (14) to use a closure interpolation technique based

on the solution for the asymptotic situationsjand construct approxima-

te constitutive equations for (pp) rather than find the function F it-

self. The derivation of the latter function, from which the moments f

any orientation-dependent quantity can be deduced, is very desriable

but extremely complex for intermediate values of a (14); it has not been

achieved up to now for these cc-cases and for a general shear flow.

AIM OF STUDY

Since many aerosol systems in closed regions involve intermediate Peclet

numbers and multidimensional flows where all nine components of the gra-

dient tensor W may be present, and as many of the systems contain particles ,.. -,,.

varying in their typical aspect ratio. over a wide range, it was worthwhile

to undertake a study aimed to obtain the orientation distribution function -

F for such situations. In general, we planned to conduct the research

according to the accepted picture of a turbulent uni (or multi)-phase

medium. In this picture, the turbulent field average properties are assu-

med to be created by the contribution of (theoretically) an infinite

number of the so-called "realizations" in each of which the motion of a fluid

element or a particle at every space-time point is uniquely defined.

Thus, it was natural to divide our study into the following three parts:

1. A (theoretical) analysis of the orientation behavior of model

nonspherical aerosol particles within one "realization"

which is characterized by a laminar medium, in essence,

2. A (theoretical) analysis of the orientation behavior of the

above particles within a turbulent field, with a special emphasis

on the lower atmospheric boundary layer and a turbulent jet,

3. An experimental test of the theoretical conclusions by some effect

such as light-scattering

In this stage of the study, it was reasonable to concentrate on the case

of axisymetric particles such as spheroids with an aspect ratio R(=a,/a.-.-."

of 0 00 o .

-~~~~~....° . ... . ... •• .o . ." .,...•.-.. ... . ., . . . ...... ...-.- ...-.. .

• ~~~~~.'.. .'".. ...... •........ _



- 3--t.

-3-

Needle-like prolate particles may simulate asbestos fibers and

straight-chain aggregates while disk-like oblate particles may

represent mineral platelets, thus, though the problem of mode-

lling of real (geometrically impure) shapes of nonspherical aero-

sol particles by regular forms is still unsolved in general, the

above axisynuetric shapes can serve as useful approximations. . .,

In passing, it should be stressed that the herewith reported

research was devoted to such a case in which the particles could

be considered as moving in a continuous fluid. The other cases

such as that of particles comparable in (typical) size to the mean

free-path of the (gaseous) medium is not amneable as yet to a hill

(sufficiently) exact analysis.

•1 ... " "

II THE LAMINAR, ONE "REALIZATION" "CASE

1. Mathematical Formulation of the Problem

Consider a system of small spheroidal particles embedded in a general

shear laminar flow u which can be given in their vicinity by

U (,t)- W(t)X. (2.1)

The distribution function F is described, in orientation space and with

the justifiable neglect of a concentration source (see above), by the

known Fokker-Planck equation

F + V.(F( -]) VF)= 0 t2.2)

where w is particle's rotational velocity.

In the following text the components of w for rotational ellipsoids

in the general laminar flow of (2.1) are given in part 2 , which can be

viewed as a preliminary treatment; then, the solution of Eq. (2.2) for

such a flow is presented in part3, and numerical experiments for

interesting cases are brought out in part 4

----------------------------------------------------------------------
tFor nomenclature see APPENDIX A

r.~~. .. . . . . * .. . ... .. . . . . . . . . ....... • . . . -.. o
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2. The Rotational Velocity Components in A general Shear Flow

In order to solve the Fokker-Planck equation for F in a general flow

field, one has to know the dependence of the rotational velocity Cw on W.

The components w for ellipsoidal particles in a creeping flow ..- '
were calculated by Jeffery (15) in general but were specifically given

by him only for the rotational bodies in a simple shear flow. These com-
ponents were later obtained by Hinch and Leal (16) for any ellipsoid

though also only for the above kind of flow. On the other hand, Takserman-

Krozer and Ziabicki (12) presented expressions for irrotational flows which

hold however solely for the axisymmetric case. Thus to find the components

of w in the general shear flow we had to proceed in the following way:

Let us take a rectangular coordinate system xk fixed in space and a (rectan-

gular) one x', locked in the particle with Euler angles e, I , )k, such that

e is the angle between x'and x,,g' is the angle between the planes XxL

and x,x, and )k is the angle between the planes xx and x, x. .
(Fig.l). Then the transformation matrix between the two systems xk and x- '

will be given by

ce sec9 ses"
C -..-.. ---- sqrs cos -. ,,..

-sec V,  +ecvc = .-

S -cecs -cscDss, ( 2.3)

Kinematically the components of , in the x,, system are related to the

Euler angles and their temporal change by

~)2. =eso- °seco

(2.

where cE is cos( 9 se is sine and similarly for IP and N.,-

likewise, the components for sufficiently small ellipsoids and with the

neglect of torques are expressed by Jeffery's general relationship (15) ..-

J. . . .. . .
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1 -r j ' . ' -,)( ) 2s -.
(0 =[v'.S. (l-&)~a~+a~1(2.5)W i X

where i, - 1,2,3 are cyclic permutation indices , , CL,, (L. are-.

the semi-axes of the ellipsoids and the vorticities V. and the strain

coefficients S' are defined by

V.. =W..- . , s. = . +W.. (2.6)

for the assumed gradient field in which

. -(2.7)

In this case of small ellipsoidsEq. (2.5) should hold even for non-uniform

slow motions of the particles if the typical time of change of W(t) of(2.1)

is large enough in comparison with the relaxation time of the latter.

By the similarity transformation from x, to x. we have

\ON/ B B (2.8)

where the repeated index implies summation

S

xf

X2
Fig.l. The Euler angles and two systems

of coordinates.

So Eqs. (2.4),(2.5) and (2.8) for rotational ellipsoids with 1 :a1 lead

to the final expressions.

and

..-,.-..-..-,:,.-,,.... .., ,..,.., . .... ...-...... ....,,. , ,. i . . . . . . . . . . . . . " " ;:: :::":
'" ' ' "" "'"" " ' "''" '-'"" ' " ' " " .. . . ~ .. . ...-.... ,..::::::... .,-,,
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= 1 1 , c2 9-G S s20. s (Q1 +Q C I) (2.9)

Here. for brevity sake, we denote

E . 4"x,5Eik 2 k 5 k %

G. = E. c) + E s

" 2a 3 2 12
I(WI-W3) Q 1 W2 2 + -W3-":-

'ii

Cm0  coson, cm ~ cosme, sMe=sinmO" smo=SL'nm ,

and similarly for A7 is defined by A (Ra-1 )/(R4+ l )

The special cases of the previously studied flows and axisymmetric particles are
readily deduced from the above equations. Thus, Jefferey's frequently used solution
(15) for a Couette flow (O,0oqx,)follows from (2.7)-(2.8) as

S ( v + A s5 C= P) = q(I + A C ).-'-'.......
and

s. 
-so q (2.)

Likewise, for the irrotational flow characterized by

'3. .q (2.12

|: :. .... -w :. : : " -w4 " -q/" (2.12)"'".: :" ": : :
" : - '- --"-" "- "3-- 3",r-•- - '',;'"" " ' - -"- -,- "=.''-" -' -' '"-" " ' +L "-"- '" -' - -' ' - '-" +- '- --
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and al ote "W " qual to zero, e et3)

which are in agreement with Takserman-Krozer and Zibabicki (12).

3. The Solution for the Orientational Distribution Function

Let us designate by W O  a velocity gradient typical of the considered

problem, and introduce the dimensionless parameters

t/Wt. (2.14)

then, the diffusion equation (2.2) together with (2.4),(2.9)and (2.14) can .... ,-

be written as

?F + ~ F~h)+.. (2.15)
S (F sihE) + -- -- F/( )

where the rotational Peclet number o is defined as before by ot = DIP

and D now is the mid-diameter rotational diffusion coefficient; the sign

is henceforth dropped out for simplicity.

The normalization condition is taken as usual to be

Fsineded" = . (2.16)/0 J o "

According to the theory of Fourier series, one can obtain the solution of (2.15)

in the form

SM ( (i-'P J) A t + S 4f C e) (2.17)
n= M= 2m on I n

as long as the equation for F has a Laplacian in e and )P . Such a function,

which is twice differentiable with regard to these variables, can be uniformly

approximated at every moment t by a finite series of the orthogonal spherical

harmonics.

~Z' '..'-..- .. . ' .-; . .. - .. ... . . .' ". .".. o - .- - -. . . % .o ' .. '..... . . . . . . . .j . - - . .. ." . .-.-.. .- .--.... .'.

.:,..'-.:.'.> , .., -,''. '.- " -'. -' - -.- ". .",' .". -. "- ',-. ..'".'.. z. '...- - . ."".-',". . .".".-.-..-'v



.. . , . - ." F..,t , ,L- , .

-8-

Inserting (2.17) in (2.15) and taking. into account the symmetry properties

of F based on physical reasoning,one gets for An(t)

d Ak (t) nWrl. ) Am  a .,-...
d.t - ' .  Z(1,6m

O• 
• k .

""" 
P..

XLJLn +J(-I) CLn~,J(2.18) .ri

where k = 0.1, n = 2,4 • . and m 0,1 , 2,n

pl pm
The expressions for the coefficients D. and CL, j appearing in (2.18) are

given in Table 1. The vorticities V. , the strains S.k , and Q
1 

Q
are defined by (2.10); the indices j and n are even. The numerical

coefficients dPm  can be calculated from Table II according to the position

indicated in the last column of Table I. In Table II e= 1/(2(2n-I)(2n + 1)],

e2  1/[2(2n-1)(2n+3)], and e: 1/[2(In+1)(2n+3)] "

all other d coefficients including those of negative indices and those
related to index combinations not appearing in the table,are zero. The corres-

pm pm 
"ponding D andCc.jn coefficients fall out too. The value of = 1/21r sinc sin .0-

can be obtained from the normalization condition (2.16) and = 0 since sin-"

m)= 0 for m = 0. Here it should be noted that for the steady-state situation,
when F/;t =0 , the r.h.s. of the general equations (2.18) provides
recurrence relations for A and An which include those of the previously

on 1nstudied special cases.

TABLE I pn PV" _"

The Coefficients D and
Lo- ,m- I

Lamm O¢" tom"" ""

I m ± I. 2. ... 6 - m)V 214 + Xd7"S,2  AR.,V1/4 + (p - ml)d;"S1

2 m ±_ 2 O.2, 4. 2Q,(I - 6) + Q,,o&ol mh6.h13,,1. 2 + (p - m)Ad S2 2 lrp= m = 0S, . ..

Else II

to
Now, just 7compare our solution with some of the former studies, let us take the .'.

. stationary gradient field with perpendicular and parallel components

,.. . .. . . , . . . .
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A/ 0 0

0 W2 W

which includes as special cases simple shear and extensional flows. Considering

the field of (2.19) small enough A values, and truncating (2.17) and (2.18)

at n,< N = 2 , one obta ins for the first terms of the steady-state solution

as expanded in X

kQ,(3C2 e -) f 3 ?kS 2e
Trf -2(3/a!+)LQ ) 2(36/&2+ V;2)

th (sLo2 ecie y(.0 onie ihta fPtri (0) h

Thus2,wfre et by a efpnon (OOi, when aord With no aseua trozero,'7

and Ziab-icki (12).

These agreements could be anticipated on the grounds that the corresponding .

coefficients

TABLE 11
The Numerical Coefficients dnnl

n- 2 rn-1 -e,(n-2)hl(n+mr-a) r-2 ~(-)lnr ) 0 ne f(n - o)
1-0 2 .(

I TH V2inn(M-M+ i) 0 e+ 1)
X (M + M - + 1) % %

n +2 rn-1 -r(n+3)J(a-m+i) m-2 -- (+)lar~) 0 e1fl(n+i
I 2

n- 2 mn+ I el(w- 2Xnv+ m) m +2 MRn- 2)/2

01 m+ I 3e(2m+ I)V2 m + 2 3e,/2

n +2 rn+ I eAu+ 3n-rn +I m r+2 -.e(+3V/2
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DpeJn ,C,,#, in Tables I and II are in harmony with those of the recurrence
relations of both the latter studies. Obviously, for arbitrary prameters A,oC and W.

one has to take a sufficiently large N which requires the use of the computer.

4. Numerical Results

The investigated particles were long prolate ellipsoids of aspect ratio S.( R 4 OQ

and thin oblate spheroids of aspect ratio 0.01 R { 0.1 which can,

respectively, simulate long cylinders and thin platelets. The average characteristic '30W
dimension of these particles was taken to be V-- 10-IO "  cm; so their
rotational mid-diameter diffusion coefficient, as calculted from the classical expre-

ssions(see Gans (17), was 0- fsec The typical flow velocities of interest

were assumed to be 1-10 m sec 1  and the typical velocity gradients 1-10 sec 1 ,

all of which correspond to Peclet numbers of o( -. 1-10.

We considered various models of flow which enabled us to stdy possible effects
on the orientation of the aerosol particles in closed environment and atmospheric

conditions. The initial orientation of the particles was taken as random; the field ".
could be either stationary or nonstationary. In the last case, the components Wjk

were supposed with no loss of generality to vary with time. with a frequency .,

and initial phase . as cos(f *-).

The system (2.18) for A#,(t) was treated by a high-accuracy differential equations-

solver based on the extrapolation method of Burlish and Stoer (18). All the summa-

tion operations in the r.h.s. of (2.18) as well as in (2.17) were carried out with

double precision. The program was checked against the solution for F obtained by .*

Peterlin (10) and Taksermmn-Krozer and Ziabicki (12) for the bove cited special .
cases. For stationary flows and sufficiently large t when a steady state is being
reached, our solution coincided with that achieved by us also through the Gauss eli-

mination method applied with double precision. This has been carried out to test the

computational compatibility of different methods in treating the system of (2.18).

A fast enough convergence of the solution for F with a reasonable accuracy has been

achieved as a rule. The-calculations were carried out for at =1 with n< N -4,6
(n,N-even) which coincided to up to four decimals and better with solutions where

a higher value of N was adopted;for o = 10, we used N 10-14 and got an accuracy

for maximum and mean values of better than 1% which was considered quite satisfactory

for our purposes. In the case of JIl < 0.923 (O.2- RC 5) or some fields

of %k smaller values of N could be taken.

. *- "i.
.% -'. %
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Of the (physical) situations which were considered, we bring here these

of:
a. A point source .. 1'

and '"-

b. A circular laminar jet

A point source flow

We consider here a flow created by a point source, where the velocity is given

by tL=qLV/419713 and its gradients are

(3) - __ _Xi X& (2.21)

with W./= *i /4r . In Eq. (2.21) X1 is nondimensionalized by a typical

length ,r(x ) is the radius vector and q0  a constant. W k is conside-

red to be constant in the imediate neightborhood of the (small) particles.

The orientation distribution function F for such a flow is presented in Fig. 2

as F(e,S?) vs 0 for p=o,it/4. ;oc:1; R:o(X= ); and RIo.oa( z-l)
*:: , a platelet), and for the (arbitrary) space point x1, x - 0.4.

At this point we have

(3) -. 4.0o -. 59
-. 5 42 0 -. Z40
-.599 -.24 0 .420 /. * (2.22)

.rom Fig. 2 it can be seen that . as soon as the components of W (3) decrease
with distance and become mostly negative, the location of the maxima of F for cylin-

drical and plateletlike particles change to values of 0 and )P opposite to those

of the former cases of fields WO and W -1) . In Fig. 3 are brought out curves

of the maximal values of F, F,, , as a function of timet for various particle

aspect ratios 0.02 4R < 5'0, I 4 ot ( I0 and for the same space

. points as of Fig. 2. The positions of the first maxima in F are shown too.

An important point to be noted in this flow case is that the orienting action

of the velocity gradient (2.22) is noticeably stronger for platelets (curves 1,2)

than for cylinders (curves 7,8) at oc = 10 but that this difference is weakened

with the decrease of o( .

%%_
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, %015

A;'-.X \..,

1 •

4...

Fig. 2 .The orientation distribution function F vse for the

point source gradient a o. -0.02 ,
(platelets) and R = 50 (long cylinders) t .2; X, : , Xz : x3 -O .4."'.---.

2. to, ,a. .
3. , = , RMO.02

a , R a , 0.4 I~
W Y .o. = 0 } 2 (t ,,

V.o = 0, R W50If#F 1. 0, A ACf An /4P=. = , -sffe: / .- ~t..ft

(t >,2)
9. =, A Soso 2 , FC13

to. 5 = S1Oa t qI. ,C=L R=,o 5 t.0 . i:....
to~f=S 12 M',7ka10a

(2)
Fig. 3 F, vs. t for a point source gradient W % (2.21)

with x., 1 X x X 0-4--

(. h -tc l . O

':Fig. 4 A perspective view of particle orientation in a point source field "';.

( schemtica l) .*,'',,

. .. . . . , " t .. ' - ft• - . f

ft... . .... .. ....... ,. '.*ftf' '..ftf .t .ftft ft ft, ..ft- t" f.ftf.*' .ft,- , ... . ,.. . . , .

'." ,f .. , . ..... '' ,t...;. .ft. '._ -J. " . .... ' . '. '' . , '' ,.. ." .', "._ ' , .. . ~. .. f."-.
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A circular laminar jet

The velocities within a circular laminar jet are given by Schlichting (19) as

2 - r 2 (2.23)

2f r

where y - r/),, f(f) -+ /t14) .Here V is the kinematic ,
viscosity,1 is determined by the jet momentum rz tjP5v; )o density, and r is the Ii
radial distance; -r and x are nondimensionalized later on by r. again.

For this flow, the components of W(x*,r) are

W1 (- 3 4_ _, If.-- ;

4_I+K4r (2.724)1

with (7=.z).' /fz ( /+)jthey are taken to be constant in the vicinity
of the (small) particles as in the point source case. .'.

The dependence of F on e at $o0, t/4 is presented in Fig.$
for the indicative case of c =1, y= i, various particle aspect ratios R_
the space point x1 =1 =O.5, x2 =x3  , and o=aD =21 9P/"
Here the velocity gradients which decrease with the distance too, are (in

Cartesian coordinates xk ) ( -.6 -. 2957 -. 2957 '
W(4) 

-5... -. _7

\-.239 -. 09 7  .339 /
(2.25)

and thus one can conjecture that the character of the orientation distribution

function of platelets and cylinders would be similar to that of the point

source case.

* A perspective, schematical illustration of the orientation in the jet's field
is shown in Fig. 6 which is constructed with the consideration on the jet's '"""

axial symmetry.

~~~~~~~~.. ... ... ...........: ....: . --- .. ........ ~ . .. , .. .-. .- -, ., .. .
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0.1

*Fig. 5. The orientation distribution function F vs. e9 in a flow of
axisywluetric laminar jet (1.204)-.s at X,. =1, X =A, =0.5,
for platelets and cylinders at R = 0.01, 0.2,5,1OO;y'aO,'t/4;oc=l,Vszf,t,2.
1.R zo.oi, >#O ; 3. RO.2,)P=O; S. R= o,5P0; ~ SfZO;

2.R:o.oi,F=IVr4 4. Rzo.2,yPw/4 ,; 6.R=1oo')Orr/; V.R2AZ:S. 4

XIt

Fig. 6. A perspective view of particle orientation in a laminar jet field

(schematical)

The computer code for the (steady)laminar, one"ReaLization" case is deposited

*with the CDRC, Aberdeen Proving Ground, MD., c/o Dr. J. Buttiger.
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5. Interim Conclusions

Obviously, we did not intend in-this study to cover every significant case of

a particle assembly; however, the type of particles and flow fields covered by us

and given here is very conductive to the prediction of the behavior of. real and

important systems. The following conclusions can be drawn out:

(i) The method put forth in this study provides a useful and convenient tool in
the structure analysis of the orientation distribution function F for a wide class

of particle parameters and flow configurations. In practical use, the obtained solution

converged fast enough.

(ii) The solution for F achieved here includes as special cases those of previous

-' studies.

(iii) The character of F has some regularities distinguished by perceptible maxima -

whose values and locations can be found in a general shear flow; these maxima will

give clear indication of a preferred orientation.

(iv) The time evolution of F, the time relaxation, and, correspondingly, other

integral characteristics of it can be determined now with sufficient accuracy.

(v) The positions of the maxima of F are established fairly fast and do not change

appreciably with time.

(vi) Significant differences exist in the orientational effect regarding the

*- maximum values of F for platelets and long cylinders in different flow situations;

the effect is stronger for platelets than for cylinders in velocity gradient fields

which decrease with distance.

.. W
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APPENDIX A 4 NOMENCLATURE

li  semi-axes of ellipsoidal particle (a, ,lies along x, )
A transformation matrix with component Aik

In

Ao, At coefficients in expansion of F, Eq. (2.0)

-% %

3 transformation matrix with components Bi , Eq. (2.3); ,B,, components

of inverse matrix

C cs o ,and the same for 5P and "; & cosne ,and the

same for 5P and )k; C , , D coefficients in Eqs. ( .18)

and Table 1

D rotational diffusion tensor of the particle; D rotational diffusion

coefficient around a mid-diameter

Eik defined in text, Eq. (2.1o)

e,,e,8 e coefficients, Table II
F orientation distribution function j F maximal value of F ....

G.,JW( defined in text. Eq. (1.90)
"j, k, L running indices

J jet's momentum

N upper limit of n in Eqs. (2.0) and (2.16)

P associated Legendre polynomial

q velocity gradient

qo constant

Q functions of fluid flow. Eq. (I.to)

R particle's aspect ratio R = cL/",,

r0  typical length

S~j strain coefficients referred to coordinate system XN k coefficients

referred to system x,

. . . . . . -
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sie sin mO and the same for O and )k
Sin0 sin"oE and the same for 5P and

t time-

U. fluid velocity; u.i components in coordinate system locked into the

particle Xk k
Vi vorticity coefficients referred to system Xk, Vj4 coefficients referredIb

to system x4

W velocity gradient tensor ; WL components of tensor referred to

system xw /kcomponents referred to WK, o typical velocity

gradient

Xk (I,2,3) Cartesian coordinates fixed in space

q coordinate fixed in the particle

Greek Letters

04 rotational Peclet number

.8 initial phase

* constant determined by the jet's momentum J

S Kronecker's delta

, Euler's orientational angles ; 0 m
are positions of

dimensionless particle parameter defined by ;k (R2 - )/(R'+ 1)

uw rotational velocity of the particles with components w-.'.

fl frequency

......................
L-~ . .

,: o...:.-:..o. .: .: -:.:. .. . . .... .... ... ... -.... ....-.-:.....-.•....... . ..... ..- . .,.
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III THE TURBULENT CLOUD CASE

1. The (Theoretical) Models

Having performed a study on the orientation density function (o.d.f.) of

small spheroidal aerosol particles in a general field of an arbitrary strencth,

(112) it became possible to treat the orientation problem in a turbulent medium.

To this end, two interconnected physical models were applied. In the first,

"The Realizations Model," it was assumed that the turbulent particle field con-

stituted an ensemble of an infinite number of realizations, j, each one of which

is characterized by one set of the o.d.f., F ( x,t) values. The latter was taken

in that model to essentially coincide with the previously found solution of the

Fokker-Planck equation (1,2) in the field of the reAlization

F 0 )  WJ -t0) 0J)

+ v.[W( C, R)F - e = 0 (3.1)

(.)
where w is the rotational velocity of the particles and ae- is their rota-

tional Peclet number defined by o/rDe being a typical component of .

the (fluid) gradient tensor, D. an effective rotational diffusion coefficient

and R the particle aspect ratio ; W. is a gradient component Sa.l/(Xk (u--

a component of the fluid velocity). The use of the solution is based on the

estimate that, even for the highest (Kolmogoroff) frequency component of ui ,

the rotational Reynolds number for the studied particles is small enough to

render their motion (quasi)stationary.

In the second,"The Micro-turbulence Model," a relation between the so-called

turbulent diffusion coefficient rDt  of the particles and the physical characte-

ristics of the fluid field was supplied. This coefficient and the Brownian ro-
Bnf n compose the effective diffusion coefficent "D

Ir
De= t + D • (3.2) -".""

Expressing the stochastic quantities of the system as F=F+F', 1) + i', 1.0. - " ""

and =i:u f+U, it could be shown that the realizations average of F,F(
' ""b R) for a space-time point is actually F(W',, De,R)

a m ' 

I'

'  /

for that point and that

S*• *o . . "o.
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F = -) VF. (3.3)

The particles considered were taken to be much smaller than the Kolmogoroff scale; so,

the turbulent rotational diffusion coefficient itself, Dt, was assumed, in the

second model, to depend on the randomizing action of the turbulent pressure fluctu-

ations at the particles' surface which arise from the (Kolmogoroff) micro-turbulence.

From dimensional analysis it was obtained that

"Dt = ( / (3.4)

where E , the turbulent dissipation energy, is given for a homogenous field

by (3)

= .w' (3.5)
Lk (k

2. Applications

As the turbulent gradient tensor ' is not completely known in many fluid

systems, it was necessary in the present study either to supplement the missing

data by the results of numerical simulations or (reasonable)guesses or both. In

cases of interest, there was conducted a parametric investigation in which the

effect of structure changes in the gradient tensor on the o.d.f. was tested.

The numerical simulations of the turbulent field were carried out according to

the method of Wang and Frost (4) where tZLL U'L(t) is found. In this
I

method, however, only the three components W (i= 1,2.3) could be acquired due to
*i the applicability of the relationship known as the Taylor hypothesis, viz.

St (3.6)

- to those components alone.

le.. l...'.......'.'". , " : .- .. ......... ... .. " . . .-
,. ._,.-."..,'.', ; ,- '' .L . L e . ? - ; '-W G' e 

"
,'... . .., _,, _L _ . . ,, , , _~ (_.,. . . . .



-22 -
VT

Results
I. l ;

"

Two physical situations were studied: BW

1. The near-ground atmospherit boundary layer, in which only

z I + (3.10)
ko 0O

and

13 - Z - kG(ZZ) (3.11)--

essentially exist, z being the elevation above ground, U, the mean horizontal

velocity, u the friction velocity, kvon Karman constant and zthe roughness

height.

2. The turbulent round free jet, for which the Schlichting's solution for the

average velocity components (7) was used. In this solution, the (molecular) kinema- - -

tic viscosity v is replaced by a virtual (turbulent)kinematic viscosity ED

given in the equation W

E o.tb J' / (3.12)

where ' (=J/p)=1.59b11 . 0 , J' is the kinematic momentum of the jet, b/,

is its half-width and Uo is the average fluid velocity along its axis

(b 11 1  c x, in which c is 0.63 to 0.79, as experimentally found).

In the boundary layer situation, both the case of a "weak turbulence", where

WO% and a "strong turbulence", where WO W>  were

investigated.

For the first case, numerical simulations were employed while for the second

one Klebanoff's experimental data (5) supplemented by simulations was applied.

Also, in the latter case, the version ..'

, 23=W (3.1 3a)
-32 2 -13

or

23 11Z (3.13b)

=W~~~~Z WI%.-7 -~
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was taken. The calculations in both cases were carried out with 20.l5 cm~ec., S

( thickness of the atmospheric boundary layer)= io m, z O =0.lIM, ko ZO.4,

D = lsec and e deduced from Eq. (5). The calculation time for F was
greater than the relaxation time of the particles, and bAe= Ay = ft/12 Or JCi/2.4.

J-2In the turbulent jet situation, the ratio between the various values of Mik ""Z
was obtained (6) through

C2  Wk (i,k,=f,Z,3; (k) (3.14)

where c,=1 +exp(-2oor), r- being the radial distance within the jet.
-iA -

For both situations, the absolute values of A.wik  were deduced by

normalization according to Eq..5). Values of F, and F, , together with the

deviations of F for fields (2)6(3) (above), were calculated as a function of height

above ground (and hence E ) in the boundary layer situation, the aspect ratio

of the particles, R (R > f for fibers and R< I for platelets), and the
parameterization factor oc . However, only the following typical figures

were presented here: 0.12

0.10-

0.06- ""

0.041 Piz 'II I
7r/ 7r/2 37r/4

e
Fig.l. Theaverage o.d.f., F ,vs. e for the

atmospheric boundary layer, "weak turbu- ..

lence", with 77-

z = 2.5 to 20w;(1)2.Sm,(2)5m,(3)lOm,(4)20m"
R = 1O n = Ic 12. "-,-J

e ',w 3(= ) according to Eq.(3.11) , we' AW, 3

Solid lines are simulation results (254 realizations, usually); points are values

calculated from the W field.
Lk

......... ... .. .. *. • .* -...-. g . . - . - . -.
[* 1., . * . ," -'.-% ,- ."... ... " o" . ... ..... "."."."..." . .... ' ". " "- ...... .. ,
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0.14* .. -,',
0.14

0.10 .*

0.06 -  - ::.,

. . .
LAN

I I p - - ,

5 11 20.Z W :::'::

Fig.2. The maximal o.d.f. F., vs. height for the atmospheric boundary

layer, "strong turbulence", R = 50; E decreases with height accor-

ding to Ball (8). (1) (1 o (2) , (3) W, dashed

lines are cases where terms of Eq.(3.7) are taken with opposite signs;

points relate to combination of Eq. 3.13b (Line 1 essentially

coincides with the random distribution one).

0.14-"'.".

0.12-"

2 3-

10" 1o4 1°'2 R I°2 IOe log v .

Fig. 3. The maximal o.d.f., F... vs. particle aspect ratio R for the
atmospheric boundary layer/'strong turbulence".

2 -3

.'. ."

z 5in, E a 230 cm 2lsec"

( ) () (3) w(3
1. It ik

(Line 1 essentially coincides with the random distribution one).

, ... ... . .. ... . ,... .,... ,. .... . . .. .
I * ,%% . -: , , , , . ,: ..: ... . .:., .,..:: .:,.,.:.... ...- : ..- : .. ...-.. , .... . .,< .,-.. .. .
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0.50
3

Fm 2

0.25- 3

5 10
Fig. 4. The maximal o.d.f. F,,vs. the parameter oc, for the

atmospheric boundary layer; "strong turbulence".
R=50 - ;R~o.o2 - =2.5; e= cMI2 /Sec 3 .

Fm
0.14

------------------
32 

---------------

1 0 l e I I I R l o 1 0 l otI

Fig. 5. The maximal o.d.f. F,,, vs. particle aspect

ratio R for a free turbulent jet.

Locationst x.Z XI= 3 = 0.05 (see ref.l),
W =5s =.5=sec cm2/sec3

(2)(2':WN~;3),(31:Wj1for terms of Eq3.7) are taken with opposite si.s.
4 (Line I essentially coincides with the random distribution one)

• ' ~ k "'~k ." "S4

4. . °' "

4.,. ,:......:...:. ~ .7i
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1.0 -"p

Fm .20

3S

a I

Fig. 6. Thecmaximlo.d'f", F vs. the parameter 0% for a free ..
turbulence jet.

~ =5sec)

-5sec"  3x= x = 0.05 (see ref.l)
f 125 cml/sec , R=50 R = 0.02-..... ,.

3. Interim Conclusions

Atmosphere boundary layer (up to 20 m height):

1. The average o.d.f. in a weak turbulent field shows structured (preferred)

orientation;

2. The maximal (and average) o.d.f. in a strong comonly occurring, turbulent
* field of the average realization Wk essentially coincidawith the random

distribution while the spread of the values of the function between fields

(2) and () is quite significant. This spread of values may have
practical connotations.

3. The values of F. and its deviations increase with the parameter o0c as

expected.

Free turbulent jet:
Conclusions 2 and 3 of the former situation apply here too.

L%,o A!,.

d::::::

''~.:,-.:.,
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IV. EXPERIMENTAL

1 .Method

The experimental method consisted of a determination of a physical effect
6 r 

• -

from which the orientation density functions (o.d.f.) F of the particlescan

be deduced.

Light scattering was chosen to be that effect. Thus, the method adopted by us

was essentially an inversion of the signal-integral

Xir 27r 1C

0 00 A

dtrdt sin odedfd"
(4.1)

where I is an average (measured) light intensity at an angle a from

the initial direction of its propagation , f(r) and g(t) are

distribution functions of characterizing geometric parameters of the particles

(r-radius, 1-length for cylinders), and y,, e, S are Eulers'

angles ( , disregarded for centrally axi-synmetric particles).

Here, as one did expect that in a turbulent field particle orientation F will

fluctuate, we planned to also determine the (central) variance of tke signal, 1',

given by

2.T. .C -.'.

i~=J ii~I-I (r)g9(L) F(e,p' ))

drdt sinO d d .. ,.---
(4.2)

It should be remarked that the dependability of this method in extracting

a sufficiently accurate values of the o.d.f. F from the signal integrals

(4.1) and (4.2) hinges on the pre-knowledge of f (r) and g(l). So, envisaging

some experimental dlfflcult.qs in this dlrect;lqn, we launched an Independent ,...,:,

S... . . . . . . . . . .. %.. .

,........-.-.-., %. - -.. ,~~~~~~~~~~~~... . .. ... ., ... ... ,-.......... ....--... - ( .. • . . ...-.....'... .. . ... '.. '

.. .. . '.'- ... .. . . '. . .. . -.. . . .. " . .• .. ..... '- .. ,.. . . ., . - .... - .. . .. . .. . - .. . -.....

) . . ;:::..' .;/ ,; ,4_,:" '..; , .,'" . .. . ;.%. : .. . ;. ¢
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(and financially unsupported) study of a direct determination of F.

2. Apparatus

General considerations

The experiments were conducted in the fully-developed turbulent region

of a straight, horizontal round pipe where quiet a bulk of characterizing

information exists (1). Thus, for the (round) pipe geometryone has that

in a fully developed flow (1)

t i=0
4/a , (4-3)

andf

U. Ur ', .-X)

where x is the coordinate along the average flow, and U., U.,-, Up

are respectively the velocity components in the x,r (the radial)and -

(the azimuthal)directions.

Also, one has

t.rW'=0 for all T (4.4) --

where the prime symbol signifies the fluctuating part of the components.

Specific

A schematic diagram of the apparatus is shown in Fig. I-

pD#A F .v -..,
--wout

in 4S 0..

E

] .;.'

Flg.l. The apparatus (schematical)

., . ... ........... ........... ............... ....**'-- .* * % %~\S % ~ ' " ..:... .*:: :::::::::::::::::: ::: " -:::::i ::::5 T *:.*.. . :7i .. . . ... ... . ..
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in which

A is a 5 m long, 5 cm. i.d. cylindrical tunnel,

B is an aerosol observation section,

C is Spurney's fiber aerosol generator,

D is a light source,

E is (scattered) light detector(EMI photomultiplier type 9558) and read-out,

?1 e2 are aerosol sampling ports.

S is a 3 D (or 2 D X -wire)sensor (TSI, Model 1295 -TI.5) including:

1. CTA supplier and linearizer (Disa,56N21 with 56 C16 Bridges)

2. Mini computer (Digital, LSI/II/23 +,250 K samples/sic)

3)4,5 - Diskette drive(sNSrowr12s),printer(FACIT) monitor (Visual 102).

3. Aerosol

The aerosol used consisted of glass fibers produced by the Spurny

generator (Fig.2a) (2); a typical size distribution of the fibers is

presented in Fig. 2b (3)
A

SE R.

SE

R
MI

La

Fig. 2a. The Spurny generator (schematical)
F-container of fibers' mass; SE,RC=electromechanical device

2- 2,
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3 0--

20

5 4S

72.-

Fig.e 2b. A tyicla size darti onossthefglass fiberTh.

A- ~ ~ ~ ~ ~ ~~W dimtrX105 u -ent Oc

sayssay avragient Renls nurteII of thepturbut) veoitaopoeyi n

can be deduced from:

1. The Taylor hypothesis

3U6 X(4.5)
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2. The incompressibility demand,

3. Supplementary values taken from Laufer (1) for the dissipation terms,

4. The isotropic conditions assumed to hold far from the walls of the flow

tunnel (1).

Then, the aerosol generator is operated and aerosol samples taken through

portholes PI P2 (FIG.l) with the aid of a (Cassela) thermal precipitator
for a scanning electron microscope analysis. The (aerosol) collecting surface

within the precipitor iswetted before sampling to obviate the need for

photogrammetry (4).

Finally, scattered light signals are taken.

Results are being accumulated now.

V. SUMMARY
A theoretical method has been developed for the calculations of the

orientation density function of elongated and flat aerosol particles subjected

to the most general laminar flow or to a turbulent field.

Some typical situations such as a point source flow, a laminar round jet
flow, the (lower)atmospheric (turbulent) boundary layer and the turbulent

round jet, were specially treated.

An experimental apparatus essentially consisting of an horizontal (pipe)
wind tunnel has been constructed to check the theoretical results through
the effect of particle orientation on light scattering. The apparatus

equipped with a (dedicated) very fast computerized system, is functioning
smoothly. Scattered light readings are being taken. **

S . ".- S"

. . . . . . .. . . . .

.. W ............... ........ .
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